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Some problems are analyzed arising when a numerical simulation of a random motion of ¢
ensemble of diffusing particles is used to approximate the solution of a one-dimensional dif
equation. The particle motion is described by means of a stochastic differential equation. The pr
emerging especially when the diffusion coefficient is a function of spatial coordinate are disci
The possibility of simulation of various kinds of stochastic integral is demonstrated. It is showi
the application of standard numerical procedures commonly adopted for ordinary differential
tions may lead to erroneous results when used for solution of stochastic differential equ
General conclusions are verified by numerical solution of three stochastic differential equation
different forms of the diffusion coefficient.

Key words: Stochastic modelling; Diffusion process; Stochastic differential equation.

Mass or heat transfer within a flowing liquid is commonly described by means of
tial differential equations of parabolic type written, e.g., in the form

%+D-(vb)—DD-Db:O, )

whereb denotes the transferred quantity (e.g., mass of a component or enthakpy
the liquid velocity vector an® denotes the intensity of relative motion (diffusion)
the transferred quantity within the moving liquid. CoefficiBnin Eq. (1) is considered
to be a constant scalar quantity. A source of the transferred quantity is not cons
in Eq. @).

Equations formally identical to Eql) are commonly adopted in the theory of st
chastic processes for the description of evolution of a so-called transitive probe
density functiorf(x;t| y;t,) of spatially three-dimensional stochastic processy:
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3
OG0 = gy 3 3. P65 X5 X% % S 6l X(0) =Y 2
wheret >tyandX =X(t), ( = 1, 2, 3).

The processX(t) can be considered, e.g., as a radius-vector describing stocl
trajectory of a diffusing molecule. This analogy was analyzed in recent'jragiading
the possibility that the diffusion coefficient can be treated as the second-order |
with coordinates varying both in space and time.

If the transitive probability density functidiix;t| y;ty) of the stochastic proce3«t)
is a solution of Eq.1), then it can be provédthat the procesX(t) is generated by the
following stochastic differential equation

dX(t) = v dt + V2D dW(t) . €)

SymbolW(t) denotes the three-dimensional Wiener process. The individual coordi
of the procesdN(t) can be formally considered as integrals of the white-noise |
ces$S. The second term on the right-hand side of Bytherefore describes the effec
of random factors acting on the diffusing molecule. The first term on the right-|
side expresses the dynamics of the deterministic part (i.e. the mean value) of p
X(t). Coefficientv in Eq. @) is commonly called the drift coefficient. It can be a det
ministic function of the process(t) and also explicit function of time.

The integration of the second term on the right-hand side of3e§e€omes proble-
matic when diffusion coefficiend is a function ofX(t) or even ofW(t). Two distinct
definitions of the so-called stochastic integral of diffusion t€&D dw(t) in Eq. @)
are reported in literatufé the Ito stochastic integral and the Stratonovich one. Tt
two definitions yield different forms of the diffusion equation (EL) ¢vhen diffusion
coefficientD is a function of position. The problem of proper formulation of the dif
sion term in transport (balance) equations was analyzed also in chemical engin
literature.

In one of our previous papérghe definition of the stochastic integral was gen
alized and a set of stochastic integrals was introduced. The Ito and Stratonovicl
grals are particular elements of this set. A so-called transport stochastic integre
defined vyielding diffusion term in Eql) in the form commonly adopted for the d¢
scription of diffusion processes.

Stochastic differential equations (SDEs) in the form of EBj.were used for the
modelling of various chemical-engineering processes, including the modelling of
chemical reactofs®, description of the mass and heat transfer in fluidized®B&dsodell-
ing of a turbulent diffusiol~*3and chemical reaction in a turbulent fifwand simu-
lation of mixing the sand particles in a rotating drum mfiXefhe equations of the
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same type were also adopted in physics, biology and chemistry, e.g., for the model
evolution of the chirality of organic moleculésand for the simulation of the prey-pre
dator systemd:'®8 Remarkable attention was devoted to modelling the noise-ind
phase transitions in systems exposed to a fluctuating environment, e.g., in a pop!
of growing cancer cell§-22

A solution of SDE 8) is represented by a (vector) stochastic function of fifig
under the assumption that the initial distribution of this function is given (formally
can write it as ”fTLtO X(t) = Xp). Then the distribution of proce¥gt) at any subsequen
time instantt > t; can be determined if Eq3) can be solved analytically. It is, how
ever, usually possible only for very simple forms of coefficianeendD and for one-
dimensional (scalar) problems.

The transitive probability density function (TPDF) describing the distribution of |
dom variableX(t) at each time instamntunder the given initial distribution at initial tim¢
instantt, (cf. Eq. @) represents the complete probabilistic description of solutior
Eqg. @) as the stochastic process generated by Bgis(of the Markov typ&€3 The
TPDF can be, in certain cases, gained by solving the corresponding Kolmogorov
tion (cf. Eqg. 1)) with the appropriate boundary and initial conditions. In many case
practical interest, however, it is only possible to solve the Kolmogorov equation fc
stationary probability density function (i.e., for. o) and very often it is not possible
to solve the Kolmogorov equation analytically at all and even not by nume
methods. Simplified metho#&?*yielding, however, only few of all of the statisticz
parameters (e.g., mean value and variance) of the pré¢gssan be adopted unde
such circumstances. These simplified methods cannot be used for the simulat
transition states of the process.

A possible way of obtaining the solution of SDEs consists in the simulation of a
number of individual trajectories of the proces@) using the stochastic differentia
equation(s) governing the process and the subsequent estimation of the TPDF or
of some of its statistical parameters (e.g., moments) applying standard procedure:
ensemble of simulated trajectories)(f) at selected values of

Hybrid computers can be used as efficient and fast solvers for SDES {féfs?}.
The analog part of the computer (an integrator) serves for the simulation of indiv
realizations of the proce3qt). The Wiener proced#/(t) is obtained by analog integra
tion of the white-noise process generated by means of an electrical noise generat
a sufficient band-width. The digital part of the hybrid computer is used for the sam
of the proces¥(t) and for an evaluation of required numerical outputs. The appl
bility of hybrid computers is somewhat restricted due to the limited ability of an.
function generators to approximate arbitrary mathematical functions occurring in S
The possibility of modelling various kinds of boundary conditions is also limited.
solution of SDEs obtained using the analog computer corresponds to the Strato
definition of the stochastic integfa}!?.12.19-21
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Another way of obtaining the individual trajectories of prock¢§ governed by
SDE in the form of Eq.3) consists in direct numerical solution of E®) (ising an
appropriate numerical integration routine. One application of this routine yields s
trajectory (random realization) of the proce$g). Repeating this procedure mar
times results in ensemble of trajectories which can be used for the estimation of
tical parameters of the procesf) (ref$-12151§, Recently Las® has published a valu:
able review paper on numerical solution of SDEs. A way of modelling of all kind
boundary conditions has been presented. However, only the Ito definition of stoc
integral and constant drift term have been considered. Pelerseiewed some algo-
rithms for numerical solution of SDEs and published a new one (suitable also for |
variate problems) and tested it with several example SDEs.

Details of numerical methods used for the simulation of trajectdffgsare not
usually reported in literature. Therefore, the aim of this paper is to present hel
experience with the application of certain numerical procedure to solving the stoc
differential equations of diffusion type (cf. E®))X. We restrict ourselves to the one
dimensional problems and to the SDEs involving the diffusion coefficient being a 1
tion of the spatial coordinate. These equations bring the most serious problems
solved by numerical methods. A shortened version of this paper has been pre
recently’.

THEORETICAL

The stochastic differential equation generating the one-dimensional (scalar) diff
processX(t) (i.e., the equation describing random walk of a diffusing particle on
line) can be written in the form

dX(t) = V[X(0),{] dt + G[X(0),{] dW(D) . @)

Both coefficientsy andG can generally be functions of the instantaneous particle
tion and, occasionally, explicitly also of time. The integral form of Byig®

t t

X(®) = X(0) = [VIX(9).§] ds+ [ G[X(9).5 dW(s) . ®)
0 0

The first integral on the right-hand side of Eg). is a common integral in the Rieman
sense. The second one (of the Stieltjes type) is denoted as the stochastic integre
defined by the relatioy®

d n-1

[GIX(9).8 dW(9) =lim $ GIX(t) + A%, +akl AW, ,  [0sa<1],  (6)

n- o i=0
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wheret; are the equidistantly placed time instants resulted from the discretization
time axis with stefx. AW, andAX; are increments of the Wiener process and the pro
X(t), respectively

K=t~
AW, =W(t,q) — W(L)
AX; = X(tiv2) = X(t)

i=0,1,2,..,n-1, 0]

wheret, = ¢ andt, = d.

In the definition of the Riemann integral, paramedecan take an arbitrary value
within the given bounds (see E®)), i.e., the position of absciss&k within interval
[,t;,,00can be also arbitrary. This is not true for the stochastic integral; in this
coefficientG is a function of procesX(t) itself. The solution of Eq.4) — the process
X(t) — depends on the way, stochastic integnlg defined by, i.e., on the value of
In the following text, the distinct solutions of E4) depending on the actual definitio
of the stochastic integral will be distinguished by the superscript Xé(d),

The distinct types of the stochastic integral are related by the edifatfon

t
X%() = XB() + (@ = B) [ GDXE(). 5] aix [ sext] dS ®
0

where the integral is of the Riemann kind. Equati®ndefines an infinite set of sto
chastic integrals depending on the valueoHowever, the only three stochastic int
grals are of practical interest:

1. Fora = 0, Eqg. 6) defines the Ito stochastic integral (ISI). The ISl is consideret
the mathematically rigorous definition of the stochastic integral because the inte
function G and the Wiener process increméiW are mutually stochastically inde
pendent+28

2. Fora = 1/2, Eq. ) defines the Stratonovich stochastic integral (SSI). The S
considered to be a natural way of stochastic processes integration governing re
namical systems. Results of analog computer simulations confirm this stafefh&he!

3. Fora = 1, a so-called transport stochastic integral (TSI) was introdlapgticable to
the description of systems involving the diffusional mass or heat transport.

In this case, coefficier is a function of the spatial coordinate, three different forms
the diffusion equation for the TPDF are obtained for the above values of parame
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General form of the diffusion equation for a one-dimensional stochastic diffusion
cessX?(t) may be written as follows

ort +7 [V(x, )] +cx 0 E“G(x t) o ax G(x, t)%—

02
ot X2

BOFE0 . ©

wheref® = f%(x;tly) is the TPDF describing the proces¥t). The solution of Eq.9)
can be used (if available) for the check of results of numerical simulations of SDI

The only initial condition, i.e., the value of stochastic proeésatt = 0 (cf. Eq. H)),
is necessary for solution of Egt)( Throughout this paper, the initial condition is co
sidered as a non-random constant, i.e.

X(0)=xo - 10

1
20

The corresponding initial condition for EQ)(has a form of the Dirad-function
lim f* =y — Xg) - 1y
t-0

Two boundary conditions have to be further supplied for the solution of FEqA(
distribution of the procesX(t) over the whole real axis is commonly considered ir
the probability theory yielding the boundary conditions in the form

limfe=limfe=0 . 12

X ——00 X — 0o

When the procesX(t) can take only positive values, the above boundary condit
usually have the form

lim fe=limfe=0 . a3

X-0+ X— +0o

A distribution of the procesX(t) over the interval of the finite length is usual
considered in chemical engineering problems, e.g., when processes within a
equipment are to be modelled. The mass fluxes at boundaries of the closed systt
at the ends of considered interval) have zero value

lim j2(x;t) = lim j%(x;t) =0 L4

X— X1+ X=X=
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where fluxj® is defined (cf. Eq.9)) as

je(xt) = v(xt) o + % fo % (O E- % % resetgag 15)

Boundary conditions1(4) are replaced with the conditions of the reflecting bot
daries at the ends of the considered interval during numerical simulation of the
(the trajectory of the simulated stochastic process reflects back into the interval
reaching the boundary). This approach was successfully adopted in our pre
papet® dealing with the description of solid particles blending in a rotating horizo
drum mixer.

In the following, the above approach to numerical solution of SDEs will be apj
to several test examples.

NUMERICAL EXPERIMENTS

Numerical Solution of SDEs

The basic principle of the approach to humerical solution of the diffusion SDEs h:
form of Eq. @) adopted in this paper was described in one of previous pagesding
exclusively with the evaluation of the Ito stochastic integral. Here we expand thi
proach to evaluation of the other kinds of stochastic integral.

The numerical solution of the SDEs consists in replacement of original equdtic
with the finite difference approximation

BXP = VO + G(X +a AX + akNo Tk
O =X+ AXA

Xa =Xa(t) (16)

where termN,,Vk approximates the Wiener process increment over time interigh
is the standardized Gaussian distributed random number. These numbers were g¢
using a method of backward interpolation of the Gaussian distribution futfct@reat
care should be taken of the selection of the generator of uniformly distributed ps
random numbers serving as input data for the interpolating procedure. The ste
pseudo-random numbers generating functions implemented in programming lang
showed not to be applicable. Throughout simulations presented in this paper, thor
tested procedure RAN2 from r&fwas used.
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Form of the first term on the right-hand side of Edf) (mplies that the deterministic
part of the proces¥(t) increment is evaluated according to the Euler integrat
schemé?.

The evaluation of incremeniX® according to Eq.16) repeats recursively for=1, 2, 3,..
with given initial valuex, for sufficiently large number of process trajectoris
A histogram ofAX" values obtained by sorting inkobins represents an approximatic
of the transitive probability density functid®(x,t; | X;) at the given time instarnt

There is not, probably, any general procedure available for a priori estimatior
value ofN yielding the required accuracy of the approximation of transitive probab
density. Computations described in literattré*16.20-22.25.28perates with number o
trajectories within the interval of 5 . 301.25 . 16. The upper limit was imposed pre
dominantly by computational power of the computer used.

The evaluation of incremetX? is quite simple for zero value of (i.e., for Ito
integral). Equation 1(6) is generally a non-linear equation with respect to increm
AXf in case ofx > 0. Any usual numerical method for solving non-linear equations
be used for its solution with the Ito incremé as an initial guess. Preliminary tes
with various forms of functioG[X?(t)] in Eq. (L6) proved that 3 or 4 Newton iteration
are sufficient to yield\X® with relative precision within the interval of £810%.

Due to the large amount of numerical operations involved in evaluaiig an
estimation procedure for reasonable size of integration timekstepighly desirable.
The following procedure was adopted throughout computations presented in this |

The mean square value of the Ito increment (for zero drift velocityy iz 0) is
given by

s = G(X)Vk 17

as a value of standard deviation of random numbgids equal to unity. Then the
relation for the maximum time step size is

Os, L O

max= L5y 0

19

where s, =s/L is the mean square value of stochastic increment related to int
lengthL. By choosing an acceptable valuespf(e.g.,s, = 0.1, i.e., the trajectory is
allowed to cross 10% of the lengthin one time step), one obtains an estimate
possible time step from EdL8). For functionsG(X) considered in this paper we gaine
dimensionless time step size estimates within the range of aboutl@d. The time
step size estimated by this procedure, however, does not provide convergence
iteration procedure evaluating the increm&Xf if very large numbeN,, is generated.
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Then the iteration loop has to be interrupted, and the evaluation of the increm
repeated with new numbaly,;. Large values oy, occur very seldomly (depending o
random number generator actually used). Tests proved that less than 0.5% of tt
number of iteration loops does not converge. A reductiof dbwers the number of
unsuccessful iterations, however, no statistically significant increase of accura
SDE solution was observed.

The deterministic term (drify[X(t),t] of Eq. @) was integrated using either the Eul
method (cf. Eq. X6)) or the second-order Runge—Kutta method (in the case of ni
near drift term).

So-called reflecting boundaries were considered for trajec{@yat both ends of
the interval considered. The trajectory reflection at the boundary was simulated
earlier papef. The same method was used, e.g., by 2aso

The computations reported throughout this paper were performed either on
3081 computer or AT 386 PC.

Test SDEs

The procedure for numerical solution of SDEs described in the previous section was
using three particular forms of stochastic differential equations of diffusion type — cf) Ec
The example equations were chosen with respect to the possibility of finding an :
tical solution of the corresponding diffusion (Kolmogorov, Fokker—Planck) equatic

A. SDE with the Linear Drift Term

dX = qdX dt + V(a2 + X dW(t) , 19

wherea, g and® are constants. A kind of EqLY) was used by Seinfeld and Lapidu:
as an example documenting the possibility of finding an analytical solution of SDE
® =1 andq = 1/2). Constan® is a time scaling factor, therefore we considepbed 1 s*
in our simulations. It was proved (see Appendix A) that the analytical solution of d
sion equation (EqA®)) corresponding to SDEL9) is identical for all kinds of stochas
tic integral (i.e., for all values af within interval [0,1[) supposing

-1
q—2 a . (20

With reflecting boundaries a = 0 andx, = L and with initial conditionX(0) = x,, the
solution is
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1 O otr’?d M
f(x;t] %) = T2 TE +2 Z exp[-r K2 DCOS%DCOSE%O% , 2y

whereK = arcsinh I/a), M = nmt arcsinh ¥/a) and M, = nrt arcsinh Xy/a). Stationary
solutionfy(x) of SDE (9)

0 = lim f(xt] %) (22)

X — +oo

can also be found for all values @fand all kinds of stochastic integral (conditi@0)
may not be fulfilled in this case)

f(x) = C(a2 +x9)aa-1 | (23

Integration constant is defined by the condition

%
j f(x)ax=1 . @4)

X

Figures 1 and 2 depict results of numerical solution of Eg). t several time instant:
for two different values of parametar The stochastic term of Eql9) was integrated

fix;t)

0

Fe. 1
Comparison of numerical solution of EQ.9 with analytical solutionq1) for Ito stochastic integral.
Parametersg = 0.5,a = 0.05,X,=1,% =0,% =L =1,a = 0,N = 6 000,h = 50, k = 0.001;
numerical solution (points), analytical solution (lines);] t = 0.02,e t=0.10,At=0.20;b0 t = 1.0,
e t=4.0,At=7.0 (all parameter and variable values are given in arbitrary time and length u
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according to Ito definitiong( = 0). With respect to Eq20), it is necessary to ugp= 1/2
to make the comparison of EQ.9) with Eq. 1) possible. TPDF according to EQ.1j
is compared with all three kinds of numerical integrals of the stochastic term b9 (
Figs 3 and 4. Figure 5 shows the stationary solutions of By w{ithout deterministic
(drift) term, i.e., forq = 0. Reflecting boundaries were considerer, at—1 andx, = 1.
Equations 23) and @4) yield the stationary solutions

1
fi(x) = , =0,q=0
X 2 arctg(l/a)(a? + x?) (a a=0)
5(x) = ————— , (a=1/2,q=0 2
s 2 arcsini(1/a)VaZ + x? ( a=0 29
1
fl =5 (a=1,9=0) ,
depicted in Fig. 5.
B. SDE with the Nonlinear Drift Term
dX = (kX3 +AX2 - QX+ R) dt + aX2 dW(t) . (26)
4 [ a UQ) 4_ b T T
fix;t) fix;t)
3 3
2 2
° O o
1+ 1
o] [¢] ® e
0 0 . ! . :
0 0.2 0.4 0.6 0.8 1.0

X
Fic. 2
Comparison of numerical solution of EQ.9 with analytical solutionq1) for Ito stochastic integral.
Parametersg = 0.5,a = 1.0,X=1,x=0,% =L =1, N = 6 000,h = 50,k = 0.001,a = 0;
numerical solution (points), analytical solution (lines);] t = 0.02,e t=0.10,At=0.20;b 0 t = 1.0,
e t = 4.0, heavy line: stationary solution according to B§) (analytical solution fot = 4.0 is not
shown) (all parameter and variable values are given in arbitrary time and length units)
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This equation was used for description of the tumor cell population dyndmfcs
Symbolsk, A, Q, R ando denote parameters of the population. The pro¥é3gener-
ated by Eq. 26) possesses either unimodal or bimodal stationary probability der
function depending on parameter values and the kind of stochastic integral use
Appendix A):

Ce 020\ . Q R

fa(x) = ————— ex == - , 2
s() s2l2(1-0)+/o? p%gx 2x2 3x3% @
6r 2 | 1 ef b
fx:0) fx:0)
4 + q 4+

Fic. 3

Comparison of numerical solution of Eq.9 with analytical solution41) for various kinds of sto-
chastic integral. Parameterg:= 0.5,a = 0.01,x5=1,% = 0,% =L = 1,N = 6 000,h = 50,k =
0.001;at=0.5bt=25ct=5.0,dt=7.0;0 Ito stochastic integralo(= 0), e Stratonovich
stochastic integralo( = 1/2), A transport stochastic integrak & 1); —— analytical solution of Eq.
(29) for a = 0, —.—.— stationary solution according to EQ3| for a = 1/2, — — — stationary
solution according to Eq28) for a = 1 (all parameter and variable values are given in arbitrary t
and length units)
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whereC® is the normalization factor ara again defines a kind of stochastic integr:
The numerically obtained stationary solution of E2g)(together with function27)
confined to positive spatial half-axis are depicted in Fig. 6.

C. SDE with the Stochastic Term Being Explicit Function of Time

2
dx = g%l“e%(““)g W) @9

fx;0

Fc. 4
Comparison of numerical solution of E4.9 with analytical solution41) for various kinds of sto-
chastic integral. Parameteig= 0.5,a=1,%=1,x=0,%=L =1,N = 6 000,h = 50,k = 0.001;
at=0.02,bt=0.1,ct=0.20;0 Ito stochastic integral(= 0), ¢ Stratonovich stochastic integra
(a = 1/2), A transport stochastic integral & 1); —— analytical solution of Eq.10) for a = 0 (all
parameter and variable values are given in arbitrary time and length units)

1.0
fix;t)
0.8

FGc. 5

Stationary solutions of Eq19) without drift term
for different kinds of stochastic integral. Pal
1 ameters)g = 0,a = 1.0,X = 0, x; = =1, % = +1,
N = 10 000,h = 40,k = 0.001,t = 10; lines: ana-
Iytical solutions 23); numerical solutionsd Ito
stochastic integrale Stratonovich stochastic inte-
gral, A transport stochastic integral (all paramet
0 . . ‘ and variable values are given in arbitrary time a
-1.0 -0.5 0 0.5 x 1.0 length units)

0.6

0.4

0.2
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- - 2.5 T T T ]
4 b a r d
X; 1)
fx9 foc
2.0} 1
3|6
15 1
oL J
1.0t 1
1 '{' ] 0.5 ]
0 L“A--‘I---“IA-“- 0 |
0 2.5 5 75 X 10 0 25 5 75 X 10
; ; — .
0.6 - |
0.6 R
X; 1)
fx;0 100
04l | 041
[}
0.2+ 8 0.2r
0 . SR mamana 0 . 5z - T
0 2.5 5 75 X 10 - © oy
r (] i ] F
0.4 c 0.6
fxc) fix0
0.3+ 1
0.4
0.2
o 0.2
0.1 1
0 : L 0
0 2.5 5 75 5, 10 0 2.5 5 7.5 X 10
Fic. 6

Comparison of numerical stationary solution of E2g)(with analytical stationary solutior2q) for
various kinds of stochastic integral. Parameters: 1,A = 3.6,Q = 3.0,R=0.7,6 = 0.4 @, b, and
c), 0 =0.3 @ e andf), N =6 000,h = 100,k = 0.001;a, d Ito stochastic integralo( = 0), b, e
Stratonovich stochastic integrak € 1/2); c, f transport stochastic integrak (= 1); —— analytical
stationary solution27); e numerical stationary solution (all parameter and variable values are ¢
in arbitrary time and length units)

Collect. Czech. Chem. Commun. (Vol. 61) (1996)



526 Hasal, Kudrna:

This SDE generates the same stochastic diffusional pre¢gssith the Gaussian dis-
tribution for all kinds of stochastic integration. The time evolution of variance of
processX(t) is (cf. Appendix A)

2
ot) = %E [®t - 1+ exp(-Dt)] . 29
N

It was proved earli€f that relation 29) results from modelling the diffusional motio
of particles having distributed velocities. That model was shown to be an improve
of the conventional diffusional models considering time independent diffusion cc
cient at the beginning of the process.

As far as only the confirmation of independence of the prot@sgenerated by Eq29)
on the kind of stochastic integration used was required the variance of the pt(ite
was evaluated solely as a function of time. The proeg€gswas considered to be
defined over interval#L,+LOwith initial valuex,= 0. With respect to the spatial syn
metry of the procesX(t), the estimate of its variance is given by the relation

N ryarn2
[SoR=y T &0

=1

whereX? denotes individual trajectories &{t) for the given value ofi. In Appendix
A it is shown that variance?(t) for any value ofx is given by the relation

4 & (=)™ 0 26(tPre
2(fy =1 2 =
O-x(t) =L + T[2 Z rng eXpEll' L2 ’ (31)
me1
wherea?(t) is given by Eq.Z9). Functiono(t) according to Eq.31) is compared with
estimate §(t)]2 (see Eqg.30)) in Fig. 7 for all kinds of the stochastic integral.

RESULTS AND DISCUSSION

As far as only particular problems concerning the numerical solution of SDEs ar
dressed in this paper, the only qualitative (graphical) comparison of humerical an
Iytical solutions of test SDEs is used instead of more sophisticated statistical test

Figures 5 and 6 show a good agreement of stationary numerical solutions dBEc
and @6) both for uni- and bimodal distributions. The Newton method using the
increment as an initial guess was adopted for evaluaiign case of the Stratonovicl
stochastic integral. The results confirm applicability of this approach. The maxi
time step size estimation according to Eg)(is applicable despite its certain inco
rectness. This is documented in Figs 1-6 by a fairly good agreement of num
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solutions of SDEs and analytical solutions of the corresponding Kolmogorov diffu
equations. The differences among the Ito, Stratonovich and transport integral
same SDE are shown in Figs 3—6. These differences are negligible for low time \
(due to identical initial distribution) and they become remarkable at high value
time. Figure 7 illustrates that all the kinds of stochastic integration yield the sam
ution for SDEs with stochastic term independent of the pros@ystself.

All the kinds of the stochastic integral can be numerically simulated by the nume
procedure described in this paper. Solutions unavailable by analytical methods ¢
therefore gained, see Figs 3 and 4. However, it is necessary to perform a prelir
analysis of each particular SDE with respect to the performance of the iterative |
dure forAX® evaluation with various values of problem parameters and time step
This iterative procedure is somewhat time-consuming, therefore, more powerful
puters are to be used, e.g., with parallel proce$3ig¢ or transformation§) of the
Stratonovich or transport integral to Ito one can be adopted Pwitl®).

It has to be pointed out that the application of common numerical methods (Rt
Kutta methods, Merson method, etc.) for the integration of SDEs may yield error
results. Let us consider Eg})(in a simplified form (without drift termv[X(t),t]) and
with the diffusion coefficient being a function only of the evaluated process

dXa(t) = GIX(t)] dW(t) . 32

Only the Ito integral of Eq.3@2) will be considered, therefore the superscoipwill be
omitted in the following text. Eqsl6) simplify to

X1 =%+ GOOH 33

0.4
2
U]

03 f

0.2 -
FiG. 7

Time evolution of variance of stochastic proc¥éd
generated by SDE28). Parametersp = 1,g = 0.35,
N=8192,h =100,k = 0.001%=0,x=-1,%=+1, 01r
L = 2; — analytical solution 1), e variance
estimate according to ER9) for all kinds of sto-
chastic integral (all parameter and variable valuggg . \ \
are given in arbitrary time and length units) 0.0 25 50 w5, 100
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whereH = VkN,,. Equation 83) is formally identical with the Euler method formul
for ODEs solution. An improvement of this method are Runge—Kutta methods ©
second ordé?, e.g., the Heun method or the modified Euler method. Formal app
tion of these methods leads to the equation

Xis1 =%+ (1= W)G))H + WHGLX; + HG(X)/(2w)] 34

with w = 1/2 for the Heun method ana= 1 for the modified Euler method. It is show
in Appendix B that the application of Euler method yields the Ito solution @) of the

SDE and both the Heun and the modified Euler method yield the Stratonovich sol
i.e., the solution of Eq.3@Q) for a = 1/2. This conclusion was proved by numeric

1.0 w T 1.0
Ssq(t) a Ssq(t) b
0.8 1 08
0.6 | 4 o06r ]
0.4 1 04f |
0.2 M 0.2 \\‘*‘—M—‘M
0 0 .
0 5 10 t 15 0 5 10 ¢ 15
1.0 " T
Seq(d ¢
0.8
Fic. 8
0.6 | Time evolution of sum of squares of deviatior
of numerical solutions of Eq.19) by various
numerical mdtods. Parameter&:= 0.001,h = 40,
04l N =10 000 (plotted points represent average of

independent simulationsy} = 0, a = 1; a Euler
method (Eqg. 33)), b modified Euler method (Eq.
02 0 (34), w = 1), ¢ Heun method (Eq.34), w = 1/2);

© O related to Ito stochastic integral, related to
Stratonovich stochastic integral (all paramet
0 ! and variable values are given in arbitrary tin
0 5 10 t 15 and length units)
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solution of Eq. 19) usingg = 0 and considering the reflecting boundaries at+1.
Uniform distribution was considered as the initial condition

/2 for |x|<1

lim f(x;t] xo) = (%) = B) 39

t-0+ for x;[>1

The results of numerical simulation were compared with the stationary probability
sity functions, i.e. with the first two of Eq2%). Figure 8 shows the time evolution c
the sum of squares of deviations between numerical and analytical solution:

h (t) iln
SH=Y 'n - [1209 ox (36)

i=1 (i-1)h

Symbolh denotes the number of bing/n is the relative count of trajectories in tihth
bin at timet. The horizontal line in Fig. 8 shows sum of squares of deviations betv
fl(x) andfS(x) and the course of lines confirms the above conclusion.

CONCLUSIONS

The simple first-order numerical iterative procedure was developed for the soluti
stochastic differential equations for diffusion processes. The procedure mal
possible to perform all kinds of stochastic integration by changing single paran
The method enables to find an approximate numerical solution of partial differe
equation of diffusional type by solving the corresponding stochastic differential €
tions.

The method makes it possible to solve problems with space- and time-varying
sivities and various kinds of boundary conditions. The accuracy of the method c
varied within a wide range by selection of a number of trajectories generatec
proper time step size.

It was shown by theoretical analysis and proved by numerical simulations the
formal application of common numerical procedures of higher orders for the num
solution of ordinary differential equations can yield erroneous results (another ki
stochastic integral than requested can be obtained) when applied to the numerice
tion of stochastic differential equations. More sophisticated methods of second
(reviewed, e.g., by Petersénrequire abundant computational effort compared w
the simple algorithm presented in this paper.
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APPENDIX A

Analytical Solution of Diffusion Equations Corresponding to the Example SDE

First we shall prove that E¢Q)(has a simple analytical solution for zero drift veloci
v, a = 1/2 and coefficien& being independent of time. After multiplying E§) py G
and after rearrangements, the following relation results

1o %;‘.(x) "pD 0, (p=1G(x)) . (A

After substituting

y= IG(X) : A2
the simple diffusion equation is obtained
op_10%_
ot 20y* 0. a3

Solution of this equation exposed to reflecting boundarigs at0 andy, = K can be
written as*

<0 Oy- Yo+ 20K)??H O (+yo+ 2nK)?D
POl =5 3. LoD EroziT XpL

Oh
Ii §+ 2 Z exp T@ECOSWBCOSB%% (A%
a

This result will be used for evaluating TPDBf SDE (9):
A) A comparison of Egd) and Q) proves that the Kolmogorov diffusion equatic
corresponding to SDELQ) has form

a;t q¢f(xf°)+cxd>f(xf’)—§ﬁHa2+x2)f°‘B=0 A5)

Using Eq. 20), we can obtain the following relation valid for all valuesa(it will be,
therefore, omitted in the following text)
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of 10 Gra—n 0 ook
ot ZOXH/a + X aXH/z_i +xf@—0. (A6)

After substituting the particular form of functi@hin Eq. (A2), we obtain transforma-
tions

oz - x0, B/aZ+x2 +x0
y :J'TZ__Z2 :arcsm%D: InG——_—0
) Ve + O O 0
T =0t . (A7)

In this way, the solution given by EQ®1) was obtained.
B) Diffusion equation corresponding to SDE6) has the form

L = Qx+ Ax? — kx3fe Zai(x3f°‘)—gza—2(x“f°‘):0 A8
ot ax% H* 5 ox 2 0x? '

Stationary solution of this equation fer= 0 is given by Eq.47). Values of constants
C" have to be evaluated numerically.

C) Diffusion equation corresponding to SDE8), whose stochastic term is an e:
plicit function of time, can be written in the simple form (for any value)of

2 2
%—— [1 - exp(~ th)] af . A9
As in Eq. A7) we put
y =X,
t i
_¢ j [1 - exp(-®9)] ds= %B[¢t—l+ exp(-ot)] , (A10

(cf. Eqg. 9)) and finally we obtain EqAQ) with p(y,T |Yg) = f(X;t | Xp). The solution for
reflecting boundaries af = -L andx, = +L together with initial conditio®(x —Xg) = &(X) is

Dhnxﬁ

T‘ZB oS I - (A1)
N DL%

f(x;t|0) =

1
2L

g
L+
g
g

n=1
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The above function is even and mean value @ therefore zero. Variance afis
simply given by

L
o3(t) = 2 [ X¥(x;t]0) o . (A12)
0

After performing integration, one gets E§1).
APPENDIX B

Formal Application of the Second-Order Runge—Kutta Methods to the Numeri
Solution of SDEs

Let us consider SDHI) without deterministic (drift) ternv[X(t),t] and with stochastic
term not being an explicit function of time

dX(t) = G(X()) aw(®) , KO =Xt , a=0], B1)

whereG = G(x) and its first derivative are continuous functionsof
An analogous ordinary differential equation (ODE) can be formally written as

dx(t) = GHx(t)) dt . B2
The most simple numerical method for the solution of B@) (s the Euler method
Xis1 =X +kGHx) B3

with k denoting the integration step ard- x(t;). More accurate Runge—Kutta metho
of second order are formulated in the following Way

X1 =% + (1= WKG{x) + kG x + (k20)GH{x)] (B4)

wherew = 1/2 defines the Heun method awd- 1 defines the modified Euler metho
After expandingG'(x) in the last term on the right-hand side of E84)(in power
series ofk and dropping out higher-order terms, the following formula results
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Xu1.= % + KG6) + ZKGL)GTx) + OK) | ®5)

where G{ = dGH{(x)/dx. Equation B5) with respect to EqsB@) and B83) represents the
Taylor expansion ox(t; + k) up to the second-order terms.

By applying the above approach to SDE, we obtain B4), {.e., the relation equi-
valent, with respect to accuracy, to the Taylor expan®&i (

AX(t) = G(X(1))AW(E) + 0.5G,(X(t))G(X(1)) (AW(Y))? (Bo)

whereAW(t) = H.
The above relation is a finite difference approximation of SDE

dX(t) = GIX(E) AW(E) + 0.5G,(X(1))G(X(®)) dt |, B7)

as dVA(t) = ot (cf., e.g%). Equation B7) obviously differs from Eq.H1) and corre-
sponds — with respect to E®) (for a = 1/2 andp = 0) — to the Stratonovich form o
SDE

dXa(t) = G(Xo() dW(L) , (a=1/2) . B9

SYMBOLS

constant in Eq.19), m

general transferred (balanced) guantity
integration limit, s

integration constant

integration limit, s

diffusivity, m?s?

probability density function, m, nr3
diffusion coefficient in Eq.4), m sl
constant in Eq.28), m s

number of bins

stochastic time step3

time step index

one-dimensional diffusional flux;’s
dimensionless length of interval
time step, s

length of interval, m

constant in Eq.21)

gl—z—x‘—'—'I:}'m O T OO0 Tw
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Mo constant in Eq.21)

N number of trajectories (particles)

No1 pseudo-random numbers wit{0,1) distribution
n number of steps

P probability

o} constant in Eq.1(9)

Q parameter in Eq.26), s*

R constant in Eq.26), m s*

S mean square deviation, m

Sq sum of squares of deviations

time, s

velocity vector, m &

drift velocity in Eq. @), m st
three-dimensional Wiener proces¥? s
one-dimensional Wiener proces$?s
position vector, m

position vector of a randomly moving particle, m
stochastic process (particle position), m
initial position, m

position vector, m

constant defining kind of stochastic integral
constant defining kind of stochastic integral
scale of time, &

constant in Eq.26), nT2s™?

constant in Eq.26), nTts®

constant in Eq.26), nrts1/?2

variance, ra

Q > X GDQ<<§§X§§<<”

(@]
N

Subscripts
i i-th time step
related to initial time instant
relative quantity
steady state
related tox-axis
related to beginning of interval
related to end of interval
uperscripts
Ito stochastic integralo( = 0)
Stratonovich stochastic integral € 1/2)
transport stochastic integral € 1)
kind of stochastic integral
kind of stochastic integral

T HW T WONE X ®n T OoT
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